Influence of point variants of pattern recognition receptors in the susceptibility to human malaria / Influência de variantes de receptores de reconhecimento padrão na suscetibilidade à malária

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Malaria is one of the major causes of disease and death worldwide, mainly of children. It is also the strongest known force for evolutionary selection in the recent history of the human genome. Besides environmental and parasite factors, host genetic factors play a major role in determining both susceptibility to malaria and the course of infection. Innate immune mechanisms directed against Plasmodium parasites both contribute to protection from malaria and modulate adaptive immune responses. The innate immune system recognizes Plasmodium via a limited number of pattern-recognition receptors (PRRs) and initiates a broad spectrum of defense mechanisms that result in the development of inflammation and host resistance to infection. But, the complete control of the infection requires adaptive immune responses; and the innate immune system is also very efficient in instructing the cellular mediators of adaptive immunity to lead a powerful additional strike force against the parasite. Clinical malaria is characterized by high levels of circulating proinflammatory cytokines, which are thought to contribute to the immunopathology of the disease. The balance between pro- and anti-inflammatory responses toward the parasite is considered critical for clinical protection. The innate immune system initiates and thus sets the threshold of immune responses. In this study, we investigated single nucleotide polymorphisms (SNP) in the genes of three PRRs: TLR, MBL and CR1 in Plasmodium-infected individuals living in endemic areas of Brazil. The SNPs TLR1 (I602S), TLR4 (D229G), TLR6 (S249P), TLR9 (T-1237C/ -1486C), MBL [in the coding sequence of exon 1 at codons 52, 54, and 57 (MBL2*A or D, A or B, and A or C, respectively); in the promoter region at position -221 (*X or *Y); and in the untranslated sequence at position +4 (*P or *Q)] and CR-1(C5507G) were determined by PCR-RFLP. We observed associations of the TLR1 I602S, TLR6 S249P and untranslated sequence at position +4 MBL (*Q) variants with clinical manifestations of malaria and of the TLR9 T-1486C, TLR9 T-1237C, MBL2*D and MBL-insufficient diplotype (XA+O/O) with higher parasitemias. No association was observed to the CR-1 C5507G ) and clinical manifestations of malaria or parasitemia. Also, we observed that individuals with MBLsufficient haplotype (YA/YA+YA/XA+YA/O+XA/XA) and not bearing the allele TLR1 I602S had less clinical manifestations of malaria and individuals with MBL-sufficient haplotype and not bearing TLR9 -1486C had lower parasitemias when compared to individuals with MBL-insufficient diplotype and bearing the variant alleles TLR1 I602S and TLR9 -1486C, respectively. Altogether, our data indicate that TLR-9 promoter and MBL-insufficient haplotype (XA+O/O) polymorphisms to some extent may control the level of Plasmodium parasitemia while TLR1 deficiency seems to predispose to mild malaria. Also, they could suggest cooperation among TLR1, TLR9 and MBL in the immune response against malaria. These genetic findings may contribute to the understanding of the pathogenesis of malaria and raise a potentially interesting issue that is worthy of further investigation in other population in order to validate the genetics contribution of these loci to the pathogenesis of malaria

ASSUNTO(S)

receptores toll like receptors complement 3b malária lectina de ligação a manose malaria toll like receptor mannose binding lectin polimorfismos polymorphism receptores do complemento c3b

Documentos Relacionados