Suppression of cell-mediated and humoral immune responses by an interleukin-2-immunoglobulin fusion protein in mice.

AUTOR(ES)
RESUMO

Interleukin-2 (IL-2) plays a pivotal role in the cellular and humoral immune responses directed against foreign antigens. We characterized the in vitro and in vivo properties of a chimeric protein consisting of mouse IL-2 fused to the mouse IgG2b Fc domains. This fusion protein binds to IL-2 and Fc receptors and supports IL-2-dependent cell proliferation but does not mediate lysis of IL-2 receptor-positive cells in the presence of murine complement in vitro. However, in vivo the IL2-IgG2b fusion protein suppresses both cellular and humoral immune responses after immunization with sheep erythrocytes. Surprisingly, delayed hypersensitivity is inhibited despite a dramatic increase of splenic CD3+ and NK1.1+ lymphocytes, indicating that altered homing of IL2-IgG2b-activated lymphocytes rather than cytolysis prevents these cells from accumulating in areas of inflammation. Although in vitro the IL2-IgG2b fusion protein does not alter proliferation of B cells in response to mitogenic stimulation, IgM production in response to sheep erythrocytes is profoundly inhibited in mice treated with the IL2-IgG2b fusion protein. Since no side effects are observed, the IL2-IgG2b fusion protein may expand the therapeutic repertoire of reagents used for the treatment of allograft rejection and autoimmune diseases.

Documentos Relacionados