In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Nonphotochemical quenching (NPQ) of excitation energy, which protects higher plant photosynthetic machinery from photodamage, is triggered by acidification of the thylakoid lumen as a result of light-induced proton pumping, which also drives the synthesis of ATP. It is clear that the sensitivity of NPQ is modulated in response to changing physiological conditions, but the mechanism for this modulation has remained unclear. Evidence is presented that, in intact tobacco or Arabidopsis leaves, NPQ modulation in response to changing CO2 levels occurs predominantly by alterations in the conductivity of the CFO-CF1 ATP synthase to protons (g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document}). At a given proton flux, decreasing g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document} will increase transthylakoid proton motive force (pmf), thus lowering lumen pH and contributing to the activation of NPQ. It was found that an ≈5-fold decrease in g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document} could account for the majority of NPQ modulation as atmospheric CO2 was decreased from 2,000 ppm to 0 ppm. Data are presented that g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document} is kinetically controlled, rather than imposed thermodynamically by buildup of ΔGATP. Further results suggest that the redox state of the ATP synthase γ-subunit thiols is not responsible for altering g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document}. A working model is proposed wherein g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{H}^{+}}}\end{equation*}\end{document} is modulated by stromal metabolite levels, possibly by inorganic phosphate.

Documentos Relacionados