Filmes finos de iodeto de chumbo como detector de raios-X para imagens médicas / Lead Iodide Thin Films as X-ray detectors for Medical Imaging

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

In the last few years, great interest has been focused to high atomic number and wide band gap semiconductor materials for applications in room temperature ionizing radiation detection using the direct detection method. Some materials such as PbI2, HgI2, TlBr, CdTe and CdZnTe are good photoconductors and can be used at room temperature. As a good candidate, PbI2 presents a wide band gap (above 2.0 eV), what leads to low noise, low leakage current and large charge collection when the device is operated at room temperature. The high photon stopping power for ionizing radiation is due to the high atomic number and high density. Researchers seek alternative methods that minimize the time of deposition of thin films of promising semiconductor materials candidates for medical applications, such as room temperature X-rays detectors for digital radiography. For this application, large areas are also necessary. In this sense, we investigated two alternative methods for the deposition of polycrystalline thin films of lead iodide (PbI2). The spray pyrolysis (SP) and solution evaporation (ES) deposition techniques were used for fabrication of PbI2 thin films with relative low deposition time. The SP technique was adopted using milli-Q water and N.N-dimethylformamide (DMF) as solvents under varying deposition parameters. In the first case, for an optimized deposition temperature of 225ºC and concentration of PbI2 of 3.1 g/l a deposition rate of about 3.3 Å/s was obtained. The DMF organic solvent was used for dissolution of the PbI2 with higher efficiency on the growth of the film. A growth rate varying from 20 Å/s up to 50 Å/s was obtained as a function of solution rate and a linear behavior could be observed. After, using the ES technique, were obtained thin films deposited using DMF as solvent with concentration of 150 g/l. Thin films 6 ?m-thick were obtained with full coverage of the substrates. In addition, the detectors produced using the thin films were also exposed to X-ray in the range of mammography diagnosis, using as X-ray source a molybdenum (Mo) anode with 0.5 mm Al filtration. The photocurrent is compared to the dark current and a linear response was observed as a function of exposure.

ASSUNTO(S)

spray pyrolysis semiconductors thin films filmes finos lead iodide pbi2 materiais semicondutores spray pyrolysis

Documentos Relacionados