Estudos de alterações funcionais de macrofagos submetidos a hipoxia no modelo in vitro da leishmaniose / Studies of funcional alterations of macrophages submetted to hypoxia in ana in vitro model of leishmaniasis

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Regions of low oxygen tension (hypoxia) are common features of inflamed/infected tissues. The analyses of cell phenotypic alterations by hypoxia are helpful for understanding of the pathological mechanisms and treatment resistance and for the development of cellular therapies. Macrophages, cells involved in the clearance of microorganisms from infected tissues, are influenced by oxygen tension changing metabolism and cytokines production. Lesions caused by intracellular protozoan Leishmania amazonensis are hypoxic and macrophages (host cells for Leishmania) cultured in hypoxia are resistant to the infection and change heat shock proteins expression, suggesting functional and structural alterations of these cells in hypoxic microenvironment. In the present work we evaluated mechanisms involved in the macrophage resistance to the parasite as well as macrophages phenotypic alterations in hypoxia. Macrophages cultured in hypoxia did not show alterations in nitric oxide (NO) production and oxide nitric synthase (iNOS) enzyme expression. Furthermore, iNOS knockout macrophages lacking NO production are also able to reduce L. amazonensis infection as wild type macrophages, what suggests the leishmanicidal effect of hypoxia is not related to NO. The cytokines TNF-a, IL-6, IL-12 e IL-10 release is altered when macrophages are cultured in hypoxia. However, the production of these cytokines by L. amazonensis-infected macrophages in hypoxia is similar to normoxia, indicating these cytokines do not participate of the leishmanicidal effect of hypoxia. The energetic metabolism of infected macrophages, evaluated through ATP production, is not modified by hypoxia, suggesting this factor is not responsible for parasite death by macrophages cultured in hypoxia. Although the uptake of inert particles by macrophages in hypoxia is lower than in normoxia, living L. amazonensis phagocytosis by macrophages is not altered by hypoxia. This result suggests that phagocytic process is also not related to low infection in hypoxia. Cultured macrophages in hypoxia have shown higher ROS production than in normoxia, but the ROS production by L. amazonensis-infected macrophages is not altered by hypoxia. Indeed, the inhibition of leishmanicidal effect of hypoxia by antioxidants N-acetylcystein and Ebselen suggests ROS play a role in the macrophage resistance to L. amazonensis in hypoxia. The expression of two isoforms of the transcriptional factor hypoxia-inducible factor (HIF) (HIF- 1alpha e 2alpha) is induced in macrophages cultured in hypoxia and, interestingly, in L. amazonensis-infected macrophages in normoxia and hypoxia. The inhibition of HIF-1alpha by cadmium chloride impaired survival of intracellular parasite, suggesting this factor is important for macrophages as host cell for L. amazonensis. Our results also demonstrated hypoxia altered the proliferative capacity of T lymphocytes and the L. amazonensis antigen presentation by macrophages. We conclude hypoxia induces macrophages functional and structural alterations and ROS are important for the leishmanicidal effect of hypoxia. Keywords: Leishmania, macrophages, hypoxia

ASSUNTO(S)

macrofagos macrophages leishmania hipoxia leishmania hypoxia

Documentos Relacionados