Uma metodologia de projetos para circuitos com reconfiguração dinâmica de hardware aplicada a support vector machines. / A design methodology for circuits with dynamic reconfiguration of hardware applied to support vector machines.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Systems based on general-purpose processors are characterized by a flexibility to design changes, although with a computational performance below those based on optimized dedicated circuits. The implementation of algorithms in reconfigurable devices, known as Field Programmable Gate Arrays, FPGAs, offers a solution with a trade-off between the processors flexibility and the dedicated circuits performance. With FPGAs it is possible to have their hardware resources configured by software, with a smaller granularity than that of the general-purpose processor and greater flexibility than that of dedicated circuits. Current versions of FPGAs present a reconfiguration time sufficiently small as to make feasible dynamic reconfiguration, i.e., even with the device executing an algorithm, the way its resources are displayed can be modified, offering the possibility of temporal partitioning of an algorithm. New lines of FPGAs are already being manufactured with the option of partial dynamic reconfiguration, i.e. it is possible to reconfigure selected areas of an FPGA anytime, while the remainder area continue in operation. However, in order for this new technology to become widely adopted the development of a proper methodology is necessary, which offers efficient solutions to the new stages of the digital project. In particular, one of the main difficulties presented by this approach is related to the way of partitioning the algorithm, in order to minimize the time necessary to complete its task. This manuscript offers a project methodology for dynamically reconfigurable devices, with an emphasis on the problem of the temporal partitioning of circuits, having as a target application a family of algorithms, used mainly in Bioinformatics, represented by the binary classifier known as Support Machine Vector. Some techniques of functional partitioning for Dynamically Reconfigurable FPGA, specifically applicable to partitioning of FSMs, were developed to guarantee that a control flow dominated design be mapped in only one FPGA, without modifying its functionality.

ASSUNTO(S)

particionamento funcional dynamic reconfiguration functional partitioning reconfiguração dinâmica svm svm support vector machine support vector machine fpga fpga

Documentos Relacionados