Um Procedimento analítico para o cálculo das integrais bi-eletrônicas em métodos de mecânica quântica molecular

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The present work develops an alternative methodology (q-Integral method) to evaluate the two-electron integrals which appear in ab initio molecular quantum mechanical calculations. The q-Integral method is based on the q-Exponential function, which comes from the Tsallis non-extensive statistics mechanics. The advantage of this procedure is that the CPU time for calculating the two-electron integrals is substantially reduced when compared with the usual methods. To validate this new methodology, the q-Integral method was applied in four cases using the Hartree-Fock, MP2 and CC (CCD and CCSD approaches) theory: i) to build up the potential energy curves of the molecular systems H2, N2, O2, F2 and HF using the STO-3G, STO-6G, Slater (minimal basis) and double-zeta (DZV) atomic basis sets, assuming several interatomic distances varying between 0.5 and 8.0 bohr; ii) to evaluate the spectroscopic constants and the rovibrational spectra for the related molecular systems; iii) to optimize the interatomic distance of the related molecular systems; iv) to calculate the bond length dependence of the dipole moment (to heteronuclear systems), static linear polarizability and second hyperpolarizability via two different approaches: the Coupled Hartree-Fock (CPHF) and Field Finite (FF) methods. Our results are in good agreement with those obtained through the standard procedure for calculating the two-electron integrals, implying that the q-Integral method is accurate enough to be used in any molecular quantum mechanical calculation. The q-Integral method was implemented in the source code of the general ab initio quantum chemistry package GAMESS.

ASSUNTO(S)

propriedades moleculares q-hartree-fock q-integrais fisico-quimica

Documentos Relacionados