Torsional stress and local denaturation in supercoiled DNA.

AUTOR(ES)
RESUMO

It is shown that local denaturation can be a natural consequence of supercoiling, even in environments where base pairing of linear DNA is energetically favored. Any change in the molecular total twist from its unstressed value is partitioned between local denaturation and smooth twisting in both the native and coil regions so as to minimize the total conformational free energy involved. Threshold degrees of torsional deformation are found for the existence of stable, locally melted conformations. As these thresholds are surpassed, the number of denatured bases increase smoothly from zero. Existing experimental evidence regarding denaturation in supercoiled DNA is in good agreement with the predictions of this theory. In addition, from existing data one can estimate the partitioning of superhelicity between twisting and writhing. Possible consequences of stress-induced strand separation on the accessibility of the DNA to enzyme attack are discussed. Control of local melting by DNA topoisomerases and DNA gyrases could regulate diverse events involved in transcription, replication, recombination, and repair.

Documentos Relacionados