The tyrosine kinases Syk and Lyn exert opposing effects on the activation of protein kinase Akt/PKB in B lymphocytes

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

The protein kinase Akt/PKB is a crucial regulator of cell survival in response to mitogenic signals. The increased kinase activity of v-akt, an oncogenic form of Akt/PKB, causes mouse T cell lymphoma, and overexpression of Akt/PKB is associated with progression of several tumor types in human. In this study, we demonstrate that ligation of B cell antigen receptor (BCR) leads to activation of Akt/PKB in B lymphocytes. BCR-induced activation of Akt/PKB required the tyrosine kinase Syk, which was not previously known to regulate Akt/PKB. In contrast, BCR crosslinking of Lyn-deficient B cells resulted in markedly enhanced hyperphosphorylation and activation of Akt/PKB compared with wild-type B cells, indicating that this Src-family kinase acts as an endogenous antagonist of BCR-induced Akt/PKB activation. Lyn inhibited Akt/PKB additively with an okadaic acid-sensitive endogenous phosphatase(s). Expression of exogenous Lyn in mutant cells restored normal BCR-induced phosphorylation of Akt/PKB. Negative regulation of Akt/PKB by Lyn was not dependent on the protein phosphatases SHP-1, SHP-2, or SHIP. Our results show that Lyn provides a mechanism for negative regulation and opposes the effect of Syk on BCR-mediated activation of Akt/PKB. Deregulation of Akt/PKB correlates with the hyperresponsiveness of B cells from Lyn-deficient mice stimulated by BCR crosslinking and may contribute to the autoimmune syndrome that develops in Lyn-deficient animals.

Documentos Relacionados