The Expression of Additive and Nonadditive Genetic Variation under Stress

AUTOR(ES)
RESUMO

Experimental lines of Drosophila melanogaster derived from a natural population, which had been isolated in the laboratory for ~70 generations, were crossed to determine if the expression of additive, dominance and epistatic genetic variation in development time and viability was associated with the environment. No association was found between the level of additive genetic effects and environmental value for either trait, but nonadditive genetic effects increased at both extremes of the environmental range for development time. The expression of high levels of dominance and epistatic genetic variation at environmental extremes may be a general expectation for some traits. The disruption of the epistatic gene complexes in the parental lines resulted in hybrid breakdown toward faster development and there was some indication of hybrid breakdown toward higher viability. A combination of genetic drift and natural selection had therefore resulted in different epistatic gene complexes being selected after ~70 generations from a common genetic base. After crossing, the hybrid populations were observed for 10 generations. Epistasis contributed on average 12 hr in development time. Fluctuating asymmetry in sternopleural bristle number also evolved in the hybrid populations, decreasing by >18% in the first seven generations after hybridization.

Documentos Relacionados