Tetrodotoxin-sensitive Na+ channels and muscarinic and purinergic receptors identified in human erythroid progenitor cells and red blood cell ghosts

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

This article concerns the identification of different types of voltage-gated Na+ channels and of muscarinic and purinergic receptors that are expressed in human erythroid precursor cells and red cell ghosts. We analyzed, by RT-PCR, RNA that was extracted from purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes in 7 to 14 days. These extracts were free of white cell and platelet contamination. Two types of voltage-gated, tetrodotoxin-sensitive Na+ channels were found. These were Nav1.4 and Nav1.7, the former known to be present in skeletal muscle and the latter in peripheral nerve. By using a pan Na+ channel antibody and Western blotting, an immunoreactive channel was detected in ghosts of human red blood cells, consistent with the expression of these two channels. The transcripts for four of the five known subtypes of muscarinic receptors were also identified, including subtypes M2, M3, M4, and M5, whereas subtype M1 was not found. Expression was also detected for the purinergic type receptors P2X1, P2X4, P2X7, and P2Y1 whereas types P2Y2, P2Y4, and P2Y6 were not found. We also searched for but did not find transcripts for hBNP-1, a type 1b human brain sodium phosphate cotransporter, and cystic fibrosis transmembrane conductance regulator (CFTR). Implications regarding the presence of these different types of channels and receptors in human red blood cells and their functional significance are discussed.

Documentos Relacionados