Supramolecular self-assembly of d(TGG)4, synergistic effects of K+ and Mg2+.

AUTOR(ES)
RESUMO

Spectral evidence indicates that molar concentrations of K+ can induce aggregate formation in d(TGG)4. The 320-nm turbidity monitoring indicates that more than 1 M KCl is needed for the onset of aggregation to occur at 20 degrees C within the time span of 24 h. The kinetic profile is reminiscent of autocatalytic reactions that consist of a lag period followed by accelerative and levelling phases. Progressive shortening of lag periods and more rapid accelerative phases accompany further increases in [K+]. Interestingly, the presence of Mg2+ greatly facilitates the aggregate formation and results in the prominent appearance of an intense psi-type CD. For example, whereas 1 M K+ fails to induce aggregate formation of d(TGG)4 within 24 h, the addition of 1 mM Mg2+ to a 1 M K+ solution is sufficient to induce the onset of aggregation in approximately 12 h. Furthermore, adjustment of the buffer to 16 mM Mg2+/1 M KCl reduces the lag time to less than 10 min and aggregation is nearly complete in 2 h. The requirement of [K+] for aggregation is reduced to 2 mM in the presence of 16 mM Mg2+, a reduction of nearly three orders of magnitude when compared to solutions without Mg2+. The effects of K+ and Mg2+ ions are synergistic, because the presence of 16 mM Mg2+ alone does not induce aggregate formation in this oligomer. Thermal stabilities of the aggregates are strongly dependent on the concentrations of these two ions. Although aggregates formed in the presence of 2 M KCl alone melt around 55 degrees C, those formed with added 16 mM Mg2+ melt at approximately 90 degrees C, with some aggregates remaining unmelted even at 95 degrees C. The slow kinetics of aggregate formation led to the appearance of gross hystereses in the cooling profiles. The interplay of these two ions appears to be specific, because the replacement of K+ by Na+ or the replacement of Mg2+ by other divalent cations does not lead to the observed self-assembly phenomenon, although Sr2+ can substitute for K+. A possible mechanism for the formation of self-assembled structures is suggested.

Documentos Relacionados