Subcellular Visualization of Gene Transcripts Encoding Key Proteins of the Chlorophyll Accumulation Process in Developing Chloroplasts.

AUTOR(ES)
RESUMO

The coordination of the synthesis of chlorophyll (Chl) and light-harvesting Chl proteins was determined by observing the sequence of appearance of the specific mRNAs for the nuclear genes CHLH, Por, and Lhcb1*2 (AB180). CHLH encodes a magnesium protoporphyrin chelatase subunit that is involved in the first committed step in Chl biosynthesis; Por encodes protochlorophyllide oxidoreductase, which catalyzes the penultimate and only light-dependent step in Chl biosynthesis; and Lhcb1*2 encodes light-harvesting Chl a/b binding protein of the type-1 light-harvesting complex of photosystem II. Using digoxigenin-labeled antisense and sense RNA probes and a highly sensitive in situ hybridization technique, we have visualized the first appearance of the specific mRNAs in postmitotic mesophyll cells of developing 7-d-old wheat leaves (Triticum aestivum cv Maris dove). The transcripts for CHLH and POR are detectable in the youngest (18 h postmitotic) leaf tissue containing dividing cells; light-harvesting complex of photosystem II transcripts appear 12 h later. This is consistent with a requirement for accumulation of Chl before synthesis of Chl a/b binding protein can proceed at a high rate. All of the transcripts are most abundant in mesophyll cells. In the first leaf the POR message is initially restricted to the palisade, but 12 h later it is also present in the spongy mesophyll cells. All three transcripts aggregated around the surface of the chloroplasts, suggesting that translation may occur preferentially in the vicinity of the target organelle for the primary translation products.

Documentos Relacionados