Study of continuous fermentation process for ethanol production using self-immobilized cells in fixed bed tower reactors / Estudo do processo fermentativo continuo para produção de etanol utilizando celulas auto-imobilizadas em reatores tipo torres

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

using flocculation yeasts of Saccharomyces cerevisiae in fixed bed tower reactors for ethanol production. We sought, through this job, the selection between four flocculent yeasts strains with appropriate metabolic profile to work in this kind of reactor. The selected yeasts strains present strong flocculent characteristics and there is no need to use cell separation unity (centrifuge) after the fermentation process reducing around 15% the costs of ethanol production. Two of these strains, JU C2 and JU C4, were collected from an industrial fermentation unity at Usina Junqueira (Igarapava/SP) during the crop of 2000. The other two strains, G1 and G2, were collected from CPQBA/Unicamp. In the operational optimization were used two fixed bed type tower reactors connected in series, a first one (R1) receive a concentrated sucrose medium diluted in line for reach predetermined concentrations and a second one (R2), that receive fermented wine from the first (R1). The fermentations experiments had between 20 or 25 days, but for standardization of the work 12 days of assays were selected. During the experiments, different feed outflow were tested in the reactors, these had been alternated in a increasing way between 1,2; 1,5; 1,8 and 2,1 L/h of medium. Samples were collected from the system and analyzed the amount of soluble solids, amount of reducing sugars, ethanol and real outflow of the system. In the ending of each experiment were analyzed the karyotyping profile and flocculating potential by absorbance method and expression of the FLO1 and FLO10 genes. The results confirm that all the studied strains are able to work in fluidized bioreactors since their metabolic limits where respected. The best results were obtained with JU C4 and G1 strains. They show a flexible and adaptable behavior ahead the tested situations in this job. They were capable to form steady beds and demonstrate good performance in sugar conversion to ethanol. The other strains, JU C2 and G2, showed nice results in the production of ethanol, however their flocculent profiles demand caution when used in fermentation processes. JU C2 has a low flocculent power forming sometimes unstable cell beds and G2 has a high flocculent power forming sometimes compact cell beds with preferential channels of medium passage.

ASSUNTO(S)

floculação tower reactors reatores quimicos flocculation yeast continuous alcooholic fermentation celulas de flotação fermentação alcoolica leveduras leveduras (fungos) - engenharia genetica

Documentos Relacionados