Secretory granule targeting of atrial natriuretic peptide correlates with its calcium-mediated aggregation.

AUTOR(ES)
RESUMO

Atrial natriuretic peptide (ANP) is a 28-aa peptide hormone secreted predominantly from atrial cardiocytes. ANP is first synthesized in the form of a 126-aa precursor (proANP) which is targeted to dense core granules of the regulated secretory pathway. ProANP is stored until the cell receives a signal that triggers the processing and release of the mature peptide (regulated secretion). Various models have been proposed to explain the targeting of selected proteins to the regulated secretory pathway, including specific "sorting receptors" and calcium-mediated aggregation. As potential calcium binding regions had previously been reported in the profragment of ANP, the current study was undertaken in an effort to determine the relationship between the ability of ANP to enter the regulated secretory pathway and its calcium-mediated aggregation. Deletion and site-directed mutagenesis of selected regions of the prosegment demonstrates that acidic amino acids at positions 23 and 24 are critical for both regulated secretion of proANP from transfected AtT-20 cells and calcium-mediated aggregation of purified recombinant proANP in vitro. These results demonstrate that the ability of certain proteins to enter secretory granules is directly linked to their calcium-mediated aggregation.

Documentos Relacionados