Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur.

AUTOR(ES)
RESUMO

Sheep fed the forage Digitaria pentzii fertilized with sulfur were compared with those fed unfertilized forage for the rumen microbial population involved with fiber degradation. No differences were detected in the bacterial population as determined by anaerobic cultures on a habitat-simulating medium, xylan, or pectin, by 35S labeling techniques for microbial protein, or by transmission electron microscopic studies of bacterium-fiber interactions. Rumen volume and water flow from the rumen were not different for sheep fed each of the forages. Rumen fungi were prevalent in sheep fed sulfur-fertilized D. pentzii as shown by sporangia adhering to forage fiber and by colonies developing from zoospores in roll tubes with cellobiose plus streptomycin and penicillin. Fungi were absent or in extremely small numbers in sheep fed unfertilized forage. Nylon bag digestibility studies showed that the fungi preferentially colonized the lignified cells of blade sclerenchyma by 6 h and caused extensive degradation by 24 h. In the absence of bacteria in in vitro studies, extensive hyphal development occurred; other lignified tissues in blades (i.e., mestome sheath and xylem) were attacked, resulting in a residue with partially degraded and weakened cell walls. Nonlignified tissues were also degraded. Breaking force tests of leaf blades incubated in vitro with penicillin and streptomycin and rumen fluid from sheep fed sulfur-fertilized forage or within nylon bags in such sheep showed a residue at least twice as fragile as that from sheep fed unfertilized forage. In vitro tests for dry matter loss showed that rumen fungi, in the absence of actively growing bacteria, could remove about 62% of the forage material. The response of rumen fungi in sheep fed sulfur-fertilized D. pentzii afforded a useful in vivo test to study the role of these microbes in fiber degradation. Our data establish that rumen fungi can be significant degraders of fiber and further establish a unique role for them in attacking and weakening lignocellulosic tissues. The more fragile residues resulting from attack by fungi could explain the greater intake consistently observed by sheep eating sulfur-fertilized compared with unfertilized D. pentzii forage.

Documentos Relacionados