Role of an Escherichia coli stress-response operon in stationary-phase survival.

AUTOR(ES)
RESUMO

The phage shock protein operon (pspABCE) of Escherichia coli is strongly expressed in response to stressful environmental conditions, such as heat shock, ethanol treatment, osmotic shock, and filamentous phage infection. We show that bacteria lacking the pspABC genes exhibit a substantial decrease in the ability to survive prolonged incubation in stationary phase under alkaline conditions (pH 9). The psp mutant bacteria grow approximately as well as wild-type strains in the alkaline medium, and stationary-phase survival of the psp mutants improves substantially at pH values closer to the optimal growth range (pH 6-8). In late stationary-phase (1- to 2-day-old) cells, the operon can be strongly induced under certain conditions, and PspA can become one of the most highly expressed bacterial proteins. The combination of stationary-phase starvation and alkaline pH is likely to place a severe strain on the maintenance of endogenous energy sources, and, consistent with these effects, we find that psp expression is also induced by uncouplers of oxidative phosphorylation and other agents that interfere with energy production. The death rate of psp mutants in stationary phase is accelerated by the presence of wild-type bacteria in the same culture, suggesting that the psp operon may play a significant role in enabling E. coli to compete for survival under nutrient- or energy-limited conditions.

Documentos Relacionados