Relationship Between RNA-directed DNA Polymerase (Reverse Transcriptase) from Human Acute Leukemic Blood Cells and Primate Type-C Viruses

AUTOR(ES)
RESUMO

An RNA-directed DNA polymerase was isolated from the peripheral blood leukocytes of a patient with acute myelomonocytic leukemia by successive purification of a particulate cytoplasmic fraction with endogenous, ribonuclease-sensitive DNA polymerase activity. Like RNA-directed DNA polymerase from mammalian type-C virus, the human leukemic cell enzyme efficiently utilized (A)n·(dT)12-18 and (C)n·(dG)12-18 and had an approximate molecular weight of 70,000. Further, the leukemic cell enzyme was strongly inhibited by antisera to RNA-directed DNA polymerase of primate type-C virus in a fashion similar to that noted with an extensively purified RNA-directed DNA polymerase from a person with acute myelogenous leukemia [Todaro, G.J. & Gallo, R.C. (1973), Nature 244, 206]. By these biochemical and immunological results the leukemic cell enzyme could be differentiated from all other known cellular DNA polymerases but could not be distinguished from RNA-directed DNA polymerase of primate type-C virus. We interpret these data, combined with observations published elsewhere, to indicate that human acute myelogenous leukemia cells contain components related to primate type-C virus. The parameters used in this study may provide the specificity and sensitivity required for determining the presence or absence and (if present) the relatedness of RNA-directed DNA polymerase in other cases and types of human leukemia.

Documentos Relacionados