Posttranslational modifications of cardiac and skeletal muscle proteins by reactive oxygen species after burn injury in the rat.

AUTOR(ES)
RESUMO

OBJECTIVE: To determine the involvement of oxidative damage in muscle wasting after burn injury. SUMMARY BACKGROUND DATA: Burn injury damages tissue at the site of the burn and also affects peripheral tissue. There is evidence to suggest that reactive oxygen species may be generated in increased amounts after burn, and these may contribute to wound healing and to posttranslational modifications of tissue constituents distant from the wound site. METHODS: The oxidation of muscle proteins was assessed, using the dinitrophenylhydrazine assay for carbonyl content, in muscles of rats after a full-thickness skin scald burn covering 20% of the total body surface area, over a 6-week period. In this model, rats failed to incur normal body weight or muscle weight gain. RESULTS: Soleus, extensor digitorum longus, diaphragm, and heart ventricle proteins were oxidatively damaged after injury. The extent of tissue protein oxidation, however, differed depending on the time points studied. In general, higher levels of protein carbonyl group formation, an indicator of oxidative damage, were found to occur within 1 to 5 days after injury, and the oxidized protein content of the various tissues decreased during the later stages. Both sarcoplasmic and myofibrillar carbonyl-containing proteins accumulated in diaphragm 3 days after burn injury and were rapidly removed from the tissue during a 2-hour in vitro incubation. This coincided with increased proteolytic activity in diaphragm. CONCLUSIONS: These observations suggest that the loss of proteins modified by reactive oxygen species may contribute to the burn-induced protein wasting in respiratory and other muscles by a proteolytically driven mechanism.

Documentos Relacionados