Phospholipid Synthesis by Staphylococcus aureus during (Sub)Lethal Attack by Mammalian 14-Kilodalton Group IIA Phospholipase A2

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Killing of gram-positive bacteria by mammalian group IIA phospholipases A2 (PLA2) requires the catalytic activity of the enzyme. However, nearly complete degradation of the phospholipids can occur with little effect on bacterial viability, suggesting that PLA2-treated bacteria can biosynthetically replace phospholipids that are lost due to PLA2 action. In the presence of albumin, phospholipid degradation products are quantitatively sequestered extracellularly. In the absence of albumin, the bacteria retain and substantially reutilize the phospholipid breakdown products and survive an otherwise lethal dose of PLA2. PLA2-treated bacteria also continue to incorporate sodium [2-14C]acetate into phospholipids, suggesting that the bacteria are attempting to repair the damaged membranes by de novo synthesis of phospholipids. To determine whether PLA2 action also triggers activation of bacterial lipolytic enzymes, the effects of nisin and PLA2 on the degradation of S. aureus lipids were compared. In contrast to nisin treatment, PLA2 treatment does not stimulate endogenous phospholipase activity in S. aureus. These findings show that S. aureus responds to PLA2 attack by continued phospholipid (re)synthesis by both de novo and salvage pathways. The fate of PLA2-treated S. aureus therefore appears to depend on the relative rates of phospholipid degradation and synthesis.

Documentos Relacionados