Papel dos canais K+ATP na resposta eletrofisiológica ao FSH e ao isoproterenol em células de Sertoli

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

2011

RESUMO

Follicle-stimulating hormone (FSH) produces a dual effect on the membrane potential of Sertoli cells, with an initial rapid phase, which comprises a hyperpolarization for a period of seconds and a depolarization phase, wich occurs more slowly, within minutes. The depolarization phase involves calcium entry stimulated by FSH. Isoproterenol, an agonist of ¿-adrenergic receptors, induces an immediate and prolonged hyperpolarization on the membrane of Sertoli cells from immature rats. The aim of this work is to study the involvement of K+ATP channels in the hiperpolarization effect of isoproterenol on the membrane of Sertoli cells. This work also aimed to study the action of Isoproterenol on the membrane potential of Sertoli cells to better understanding the hyperpolarizing component produced by FSH in Sertoli cells, in addition to study the Ca2+ uptake stimulated by FSH and by isoproterenol. Membrane potential was recorded using isolated seminiferous tubules of testes of 15 days-old rats. The record of intracellular Sertoli cell was performed using microcapillary filled with KCl3 mmol/L coupled to an electrometer. We performed a single topical application of FSH(4mU/mL) and Isoproterenol (2¿M). Then, inindividual experiments were applied topically, FSH and isoproterenol, 5 minutes after topical application of Tolbutamide (10¿M) and glibenclamide(10¿M), sulfonylurea a hypoglycemicaction, exercising effect closing of K+ channels ATP. The Tolbutamide (10¿M) also was infused 15 minutes before application of Isoproterenol in order totest whether this would prevents ulfonylurea most significantly to the action of isoproterenol. In the technique of 45Ca2+ uptake, we used FSH and isoproterenol with pertussis toxin (PTX), blocking the G protein subunit Gi to evaluate its involvementon Ca2+ uptake in Sertoli cells from immature rats. We used the cholera toxin, a stimulator of Gs protein, to evaluate the involvement of AMPc on Ca2+ uptake in Sertoli cells from immature rats. SQ22536, an inhibitor of the enzyme adenylate cyclase, was used to evaluate the involvement this enzyme in the stimulatory action of FSH in Sertoli cells from immature rats. The results were given as mean ± SEM. The data of the change in membrane potential were analyzed by ANOVA for repeated measures with Bonferroni post-test. The hyperpolarization produced by FSH was inhibited when tolbutamide was applied (10¿M). The SQ22536 also abolished the hyperpolarization caused by FSH. The Isoproterenol when used alone produced a hyperpolarizing response on the membrane potential , changing from -32.4mV±1.32 mV to -40.0±0.78 mV at 60 seconds after its application (*p<0.001) (n=6Sertoli cells). Topical application of Tolbutamide (10¿M) blocked the action of Isoproterenol (2¿M), causing a depolarization of -41.0±0.47 mV ranged up to-39.0± 2.02 mV at 120 seconds after application of Isoproterenol (p>0.05) (n=6Sertoli cells). The Tolbutamide infusion was more effective inblocking beta-adrenergic response, causing a depolarization of -41,6 ±1,21 mV to -35,4 ± 0,98 mV at 120seconds after the topical application of Isoproterenol (p>0.05) (n=9Sertoli cells). Isoproterenol produces a rapid hyperpolarization on membrane potential of Sertoli cells. This effect was blocked by tolbutamide, indicating that the activation of beta-adrenergic receptors involves opening of K+ATP channels in the membrane of Sertoli cells from immature rat testes. PTX,when applied topically prior to application of isoproterenol did not prevent the characteristic hyperpolarization caused by isoproterenol. The hyperpolarizing action of isoproterenol is independent of Gi protein. PTX does not prevent the uptake of 45Ca2+ stimulated by isoproterenol. The cholera toxin, which stimulates Gs protein, does not stimulate 45Ca2+ uptake in Sertoli cells from immature rats.

ASSUNTO(S)

hormônio folículo estimulante células de sertoli isoproterenol canais de cálcio canais de potassio

Documentos Relacionados