Nodes architecture and traffic engineering in optical networks / Arquitetura de nós e engenharia de tráfego em redes ópticas

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Integrating telecommunication networks has enlarged the coverage, but has made operations more complex, mainly because of the architecture, formed by various layers. These layers deal with different protocols and transmission rates, as well as electrical and optical signals. The usual alternative of expanding the resources proportionally to the demand is impractical due to the high cost. Therefore, efficient solutions which add to the benefits of optical and electronic technology in node architecture and traffic management are essential in the design, expansion and management of telecommunications networks. The nodes that enable traffic switching in the optical and electronic layer and traffic grooming have been used to make the best use of the available resources in the networks. These nodes are known as MG-OXCs. In this research, an approach based on MG-OXCs was proposed with one and three layers, which include the wavelength conversion and traffic grooming. Additionally, a method to calculate the node costs based on their use of ports was proposed. The work also considered optical signal impairments in order to analyze the network physical layer with MG-OXCs nodes. For the purpose of traffic management, a scheme which sets specific wavelengths for different bandwidths and a scheme which monitors the flow of traffic were proposed. The main aim is to reduce the blocking probability of connection requests. In optical networks, the node models proposed are able to reduce the number of ports used in usual optical cross connects and switch the traffic connections using different bandwidths. The scheme of setting specific wavelengths for different bandwidths improves the bandwidth use and the blocking probability. The scheme which monitors the flow of traffic achieves blocking probability reduction due to the increase in resources. The numerical results presented show the feasibility of the proposed algorithms to manage resources and switch traffic in telecommunication networks.

ASSUNTO(S)

dynamic traffic otimização resource allocation routing waveband tráfego dinâmico monitoramento conversão de comprimento de onda mg-oxc roteamento monitoring optimization agregação de tráfego traffic grooming mg-oxc wavelength conversion waveband wdm optical networks alocação de recursos rede óptica wdm

Documentos Relacionados