Natural Resistance to Inhibitors of the Ubiquinol Cytochrome c Oxidoreductase of Rubrivivax gelatinosus: Sequence and Functional Analysis of the Cytochrome bc1 Complex

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc1 complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q0 and Qi sites. Because the resistance to cytochrome bc1 inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc1 complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc1 inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the bH and bL hemes, respectively. These characteristics imply different functional properties of the cytochrome bc1 complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc1 are discussed with reference to the structure and function of the cytochrome bc1 complexes from other organisms.

Documentos Relacionados