Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation.

AUTOR(ES)
RESUMO

The binding of a 19-mer guanosine-rich oligodeoxyribonucleotide, TG3TG4TG4TG3T (ODN 1), to a complementary polypurine DNA target was investigated by DNase I footprinting and restriction endonuclease protection assays. Monovalent cations inhibited intermolecular purine-purine-pyrimidine triple-helical DNA formation, with K+ and Rb+ being most effective, followed by NH4+ and Na+. Li+ and Cs+ had little to no effect. Similar results were observed with the G/A-rich oligonucleotide AG3AG4AG4AG3AGCT. Kinetic studies indicated that monovalent cations interfered with oligonucleotide-duplex DNA association but did not significantly promote triplex dissociation. The observed order of monovalent cation inhibition of triplex formation is reminiscent of their effect on tetraplex formation with G/T-rich oligonucleotides. However, using electrophoretic mobility shift assays we found that the oligonucleotide ODN 1 did not appear to form a four-stranded species under conditions promoting tetraplex formation. Taken together, our data suggest that processes other than the self-association of oligonucleotides into tetraplexes might be involved in the inhibitory effect of monovalent cations on purine-pyrimidine-purine triplex formation.

Documentos Relacionados