Modelos para a produção de eritropoietina recombinante humana in vivo e in vitro com vetores plasmideais em ovinos / Models for the production of human recombinant erythropoietin in vivo and in vitro with plasmidial vectors in ovine

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

24/02/2011

RESUMO

Some post-translational modifications are necessary for the production of biopharmaceutical proteins, such as recombinant human erythropoietin (rhEPO), with a good specific action and a high biological activity. These modifications are obtained only by bioreactors based on eukaryotic cell as mammary cells. Bioreactors, in vivo or in vitro, with this kind of cell have been used for a viable and strategic production of biologically active recombinant proteins. For this reason, the establishment of a new line of mammary cells with high milk protein expression and the development of systems for production of recombinant proteins by the mammary gland in vivo are essential studies. One of the main objectives of this study was to compare two methods, enzymatic and non-enzymatic, to establish ovine mammary cells culture and verify their gene expression of milk proteins such as β-lactoglobulin, α-casein, β-casein and κ-casein with different treatments: LOS (lactating ovine serum) or FBS (fetal bovine serum) added to the culture medium, in the presence or absence of Matrigel®. In this manner, an in vitro study was performed and the culture of two lines were established, digested (DL) and non-digested (NDL), of ovine mammary cell until the passage 12 (P12). In DL was observed just one cellular type that was positive for staining with vimentin. This cell line expressed β-lactoglobulin and β-casein genes with the FBS treatment and without Matrigel. The gene expression was lower (P=0,001) when compared to the NDL under the same conditions of culture. Then, the NDL expressed β-lactoglobulin, β-casein and κ-casein genes when treated with FBS without Matrigel. The treatment with LOS in the culture medium increased the gene expression of β-lactoglobulin for both cell lines. The growth curve was determined with both cell lines in P12 with FBS or LOS treatment. For the NDL, the type of medium had effect on the cell growth speed and was highest with the FBS treatment (P<0,05). However, the medium did not have effect on growth speed of LD (P>0,05) and no difference was observed at the NDL treated with LOS (P>0,05). The NDL was positive for staining with vimentin and cytokeratin. The second main objective of this study was to establish an in vivo system for the production of rhEPO in milk of non-transgenic ewes by the intra-mammary infusion of two different plasmids and verify the qualitative milk secretion of this protein by western-blotting. In this way, in the in vivo experiment ovine mammary glands were transfected with two different plasmids: ALAC (n=2), BGL (n=2) and negative control (n=2). Each half udder was filled with plasmid solution and three 3 electric pulses of 500 volts were applied for 15ms each, followed by another three pulses with reversed polarity. The three animals were milked for 20 days after transfection, nevertheless it was not possible to identify rhEPO in any milk sample. The test threshold to identify rhEPO (Eritromax®) in milk from a negative control animal was 67,5pg. In conclusion, the in vitro culture of NDL and DL was established up to the P12 with expression of milk protein and the LOS treatment increased the expression of β-lactoglobulin. The two cell lines culture were positive for staining of vimentina but only NDL was positive for cytokeratin. In the in vivo experiment, rhEPO secretion was not detected in the milk from ewes transfected with ALAC and BGL plasmids.

ASSUNTO(S)

bioreactor biorreatores célula mamária eritropoietina recombinante humana mammary cell milk proteins ovelha ovine proteínas do leite recombinant human erythropoietin

Documentos Relacionados