Modelagem e simulação de processos de separação de misturas gasosas multicomponentes utilizando modulos de membranas de fibra-oca

AUTOR(ES)
DATA DE PUBLICAÇÃO

2002

RESUMO

Separation of gaseous mixtures using membranes is a known operation. Even so, only recently is receiving enough attention, mainly due to the great development obtained in the polymeric material science. Nowadays, this process is applied in industrial scale for production of high purity nitrogen from air and for hydrogen recovery from hydrocarbon mixtures in the refinery and petrochemical processes. ln the present work the performance of hollow fiber membranes separation units has been studied. A mathematical model for separation of multicomponent gaseous was implemented for several flow types: co-current, countercurrent and cross flow. A computer program was developed to simulate the operation of several important industrial separation processes: the separation of Nz from air, H2 recovery from hydrocarbon mixtures and separation of i-C4HlO from olefin/paraffin C4 mixtures. The effect of parameters such as trans-membrane pressure, feed flow and membrane area on the membrane unit performance is analyzed in terms of the purity and of the desired product recovery. The results show that the countercurrent flow presents the best separation performance for the desired products. The effect of purge for COz removal from the confined air systems was also analyzed. It was observed that the increase of purge fraction increases the remova! of COz from air. It was verified that the choice ofthe separation strategy is also very important. For i-C4HlO separation, the requested total area using two membrane modules is almost equal the half of the necessary area using one membrane module. The Joule- Thomson effect on membrane separation was also studied. The results show that this effect was not important for the separation ofi-C4HIO / i-C4Hg binary

ASSUNTO(S)

simulação (computadores) modelagem de dados memblanas (tecnologia)

Documentos Relacionados