Miotoxinas PLA2 "like" de Bothrops pirajai : caracterização molecular e funcional

AUTOR(ES)
DATA DE PUBLICAÇÃO

2000

RESUMO

The genus Bothrops comprises severaI species, which are widely distributed in South and North America. Among the bioactive proteins from Bothrops venoms, the phospholipase A2(PLA2,E.C.3.1.14) and PLA2-likemyotoxin are outstanding as their major components. Phospholipase A2Sare calcium-dependent enzymes which hydrolyze the 2 ester bonds of 1,2 diacyl-3sn phosphoglycerides (Chang et aI., 1994, Shimohigachi et aI., 1995, Ogawa, et aI., 1996). They are found in most tissues, mainly in the pancreatic juice of mammals, venom of snakes and insects. PLA2enzymes are classified onto four groups (I, II, III and IV), according to their extracellular or intracellular origin, their primary structure and disulfide bonding (Denis et aI., 1994). In this thesis, we work with Bothrops pirajai whole venom and its myotoxic phospholipase A2fractions. At first time, we develop a new strategy of purification of this myotoxinon the HPLC(reverse phase, ion exchange, and molecular exclusion) and in the convention low-pressure chromatography (CM-Sepharose). In our experimental condition, we observed that Reverse Phase HPLC(RP HPLC) has advantageous on the conventional method about the time of chromatographic run, the resolution of some proteins and preservation of integrity of PLA2 molecule. The first work made by Toyama et aI., (1995) presents the results of the purification of the main myotoxin PLA2"Iike" (MPI and MPII) from the whole venom of Bothrops piraja.,using only chromatographicstep on the RPHPLC. This novel purification protocol restricts the amount of protein to be loaded on each column in few mg. The final yield is 35% better than to in low-pressure ion exchange chromatography. In the Soares et aI., (1998), we proposed to increase the purification grade of main PLA2 "like" myotoxin using conventional column, because the RP HPLC does not accept great amount of samples. In the conventional procedure, the elution of the PLA2 "like" myotoxin was eluted using ammonium acetate at high salt and pH values. The exchange of the ammonium acetate by ammonium bicarbonate allowed using low pH and ionic salt concentration. PrTX-II or Piratoxin II was a second important myotoxin from Bothrops pirajai that has been sequecianated by Toyama (Submitted). It has 121 amino acid residues and has low PLA2activity arose of the substitution of Asp49 by Lys49and alteration of the calcium binding loop sequence by replacement of Gly32 by Leu32 and other modification were important for 1055of the flexibility the calcium ion binding site. PrTX-II I have only one amino acid change (0132 to A132) to PrTX-I, this change confer to PrTX-II a slight basic character. The MP-III 4R was thirty myotoxin isolated from the Bothrops pirajai venom. This PLA2 like myotoxinhasa moderate PLA2activity if comparedto other enzymesfound in the Crotalic venom. MP-III 4R is a rare example of PLA2 with phospholipase A2, anticoagulant and myotoxic activities. Its moderate PLA2activity is due to the replacement of E53 by K53 and its anticoagulant effects is due to that PLA2activity. The myotoxicity is not due to the catalytic activity. The aminoacid alignment of PrTX-I, PrTX-II shows a high levei(95%) of sequential homology between this myotoxin and other bothropic Lys-49 PLA2. However, these values fali to 80% for nonbothropic and to 70-75% for the Asp 49 PLA2S. 80th toxins were characterized as very potent myotoxin and have a residual PLA2 activity. MP-III 4R 049 exhibit a sequence homology with other 0-49 PLA2up 75%. But the amino acid alignment of MP-III 4R with K-49 PLA2falls to around 60% of homology. PrTX-II and PrTX-III were crystallizedand were diffractedat resolution of 2.04 and 2.7 of resolution, respectively. Recently, the three-dimensional structure of PrTX-II was solved and showed a dimeric structure. Other venoms from Bothropsjararacussu, Bothrops asper, Bothrops atrox, Bothrops pirajai, Bothrops moojeni, Bothrops alternatus and Bothrops (Bothriopsis) bilineata were fractionated using a simplified procedure based on ion-exchange chromatography on CMSepharose at pH 8.0 or reverse phase HPLC. The use of NH4HCO3or acetonitrile as the buffer in these chromatographic procedure described above, has other advantages as omissionof desalting and easy for freeze-drying. This allows a best recoveryof the proteins eluted and reduction of run time. The CM-Sepharose and the RP-HPLC methods described here are recommended for preparative and analytical purpose, respectively. Previous reported methods use two or more chromatographic steps for the isolation of myotoxins. In addition, the preparative WBondapackC18 column was also useful for the purificationof PLA2S. Both methods described here allow separating the major components of the venom using an only one chromatographic step. The resulting elution profiles showed important differences in the myotoxin content of these venoms. The venoms from B. alternatus, B. atrox and Bothriopsis bilineata did not contain the major myotoxin found in the other venoms. The amino acid sequence of the first 50 residues of the N-terminal region of the PLA2-like myotoxins showed a homology of 90-96% with other botropic myotoxins. All of the myotoxins isolated induced rat paw edema, increased the levei of plasma creatine kinase and produced myonecrosis together with polymorphonuclear cell infiltration. In this thesis, we present the isolation; purification and determination of primary structure of three phospholipase A2"like" myotoxin from the Bothrops pirajai snake venom denominated as PrTX-I, PrTX-II and MP-III 4R. PrTX-I or Piratoxin I was firstly isolated by Mancuso et aI., (1995), and full sequenced by Toyama et aI., (1998). PrTX-Iis the main miotoxic PLA2found in the whole Bothrops pirajai venom, composed by 121 amino acid residues, a DLso around 8mg/kg in mice and a minimal edematogenic dose of 39.5 :t 1.8 /.lg. The chemical modification of His-48 of PrTX-I by p-BPB practically destroyed its biological activity

ASSUNTO(S)

cobra venenos fosfolipases

Documentos Relacionados