Mechanical Regulation of the Proangiogenic Factor CCN1/CYR61 Gene Requires the Combined Activities of MRTF-A and CREB-binding Protein Histone Acetyltransferase*

AUTOR(ES)
FONTE

American Society for Biochemistry and Molecular Biology

RESUMO

Smooth muscle-rich tissues respond to mechanical overload by an adaptive hypertrophic growth combined with activation of angiogenesis, which potentiates their mechanical overload-bearing capabilities. Neovascularization is associated with mechanical strain-dependent induction of angiogenic factors such as CCN1, an immediate-early gene-encoded matricellular molecule critical for vascular development and repair. Here we have demonstrated that mechanical strain-dependent induction of the CCN1 gene involves signaling cascades through RhoA-mediated actin remodeling and the p38 stress-activated protein kinase (SAPK). Actin signaling controls serum response factor (SRF) activity via SRF interaction with the myocardin-related transcriptional activator (MRTF)-A and tethering to a single CArG box sequence within the CCN1 promoter. Such activity was abolished in mechanically stimulated mouse MRTF-A−/− cells or upon inhibition of CREB-binding protein (CBP) histone acetyltransferase (HAT) either pharmacologically or by siRNAs. Mechanical strain induced CBP-mediated acetylation of histones 3 and 4 at the SRF-binding site and within the CCN1 gene coding region. Inhibition of p38 SAPK reduced CBP HAT activity and its recruitment to the SRF·MRTF-A complex, whereas enforced induction of p38 by upstream activators (e.g. MKK3 and MKK6) enhanced both CBP HAT and CCN1 promoter activities. Similarly, mechanical overload-induced CCN1 gene expression in vivo was associated with nuclear localization of MRTF-A and enrichment of the CCN1 promoter with both MRTF-A and acetylated histone H3. Taken together, these data suggest that signal-controlled activation of SRF, MRTF-A, and CBP provides a novel connection between mechanical stimuli and angiogenic gene expression.

Documentos Relacionados