Macrophage activation during Plasmodium chabaudi AS infection in resistant C57BL/6 and susceptible A/J mice.

AUTOR(ES)
RESUMO

Macrophage activation was examined in resistant C57BL/6 and susceptible A/J mice during the course of blood-stage infection with Plasmodium chabaudi AS. Three parameters of macrophage activation (lipopolysaccharide [LPS]- and malaria antigen-induced tumor necrosis factor [TNF] production in vitro, phorbol myristate acetate [PMA]-induced production of oxygen metabolites in vitro, and Ia antigen expression) were assessed during infection in populations of peritoneal and splenic macrophages recovered from infected mice of the two strains. The peak level of LPS-induced TNF production in vitro by splenic macrophages from both infected C57BL/6 and infected A/J mice occurred on day 7, which was 3 days before the peak of parasitemia. Although the kinetics of TNF production in vitro in response to either LPS, soluble malaria antigen, or intact parasitized erythrocytes varied in some of the other macrophage populations during infection, there was no significant difference in the peak level of production. Peritoneal and splenic macrophages from infected C57BL/6 mice exhibited significantly increased PMA-induced production of H2O2 in vitro on day 7. Peritoneal macrophages from infected A/J mice also exhibited significant PMA-induced H2O2 production on day 7, while production by splenic macrophages from these hosts was not increased in comparison with production by cells from normal animals. Only peritoneal macrophages from infected C57BL/6 mice produced significantly increased levels of O2-, and this occurred on day 7 postinfection. Ia antigen expression by both peritoneal and splenic macrophages from resistant C57BL/6 and susceptible A/J mice was significantly increased during P. chabaudi AS infection. However, the percentage of Ia+ peritoneal macrophages on days 8 and 10 postinfection and Ia+ splenic macrophages on day 3 postinfection was significantly higher in C57BL/6 than in A/J mice. Thus, these results demonstrate that macrophages from P. chabaudi AS-infected A/J mice exhibit defects in oxygen metabolism and Ia antigen expression which may contribute to the susceptibility of these hosts to this intraerythrocytic parasite. The cause-and-effect relationship between these defects and the susceptibility of A/J mice to P. chabaudi AS is unknown.

Documentos Relacionados