Investigation of the theory of coupling compositis in thermal waves fields / Investigação da teoria de acoplamentos de compósitos em campos de ondas térmicas

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

In this work we elaborate an analytical solution of the temperature field of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam. The method is based on the expansion of plane and cylindrical thermal waves, in series of Bessel and Hankel functions. Firstly, the work shows the model of propagation of plane thermal waves in homogeneous, infinite, opaque and thermally isotropic materials. Then, for a clearer mathematical study, we initiate with a simpler method, which is a material containing only one cylinder. After that, we expanded the model by placing two separated cylinders inside of this material where the multiple scattering effects appeared. In the sequence we will treat the described model in semi-infinite materials, in which we take into consideration the adiabatic condition at the border of the sample with the air, that is, the material does not loose heat to the environment. This condition is represented through method of images. The heterogeneity of the medium is achieved with the generalization of the model for a medium with N separated cylinders. Finally, we include the modifications to the previous model due to the overlapping of these cylinders. This model is general, in the sense that there are no restrictions when considering the diameters and positions of the cylinders inside the material nor with respect to the thermal properties of the cylinders and matrix. Besides, it can be used to calculate the temperature at any point of the sample. The thermal waves carry informations about the composite materials internal structure and thermal properties that, in practice, can be obtained with the measurement of the temperature in the surface of the sample, through photothermal techniques. Considering this, we are able to structurally characterize a composite material of fibers. We are also capable of characterizings them thermally, obtaining their effective thermal properties. We have performed measurements on calibrated samples using lock-in infrared thermografy (photothermal radiometry) with a fixed frequency which confirms the validity of the model. Furthermore, a study of thermal waves distributions on materials containing spheres are also discussed theoretically here.

ASSUNTO(S)

overlapping composites espalhamento compósitos acoplados ondas térmicas scattering thermal waves

Documentos Relacionados