Increased Antimycobacterial Immunity in Interleukin-10-Deficient Mice

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Macrophage effector functions are essential for clearing mycobacterial infections. Interleukin 10 (IL-10) negatively regulates macrophages and could be a factor inhibiting effective antimycobacterial immunity. We previously showed that transgenic mice which produce excess IL-10 from T cells are susceptible to infection, even though these mice continue to produce gamma interferon (IFN-γ) at levels similar to those in controls. Here, we extend our genetic analysis of the functions of IL-10 in antimycobacterial immunity by testing the hypothesis that IL-10-deficient (IL-10−/−) mice should be more resistant to mycobacteria than control mice. Mycobacterium bovis bacillus Calmette-Guérin-infected IL-10−/− mice had significantly lower bacterial burdens than control mice early in the infection. Contrary to expectations, however, IL-10−/− mice did not have increased levels of IFN-γ, either from T cells or in the plasma, suggesting that other mechanisms are responsible for the increased resistance. However, macrophages from IL-10−/− mice produced increased levels of inflammatory cytokines, including IFN-γ, as well as nitric oxide and prostaglandins, which could account for increased antimycobacterial immunity. Our genetic analysis revealed that IL-10 is an inhibitor of early mycobacterial clearance. The data also suggest that IL-10 negatively regulates numerous macrophage functions as well as playing a role in down-regulating the general inflammatory response, especially in conditions where an infection must be controlled through macrophage activity.

Documentos Relacionados