In Vitro Pharmacodynamics of Amphotericin B, Itraconazole, and Voriconazole against Aspergillus, Fusarium, and Scedosporium spp.

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

We compared the in vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium species with a combination of two non-culture-based techniques: the tetrazolium salt 2,3-bis-(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium-hydroxide) (XTT) colorimetric reduction assay, and fluorescent microscopy with the cellular morbidity dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) to directly visualize hyphal damage. Amphotericin B exhibited species-specific concentration-dependent activity, with 50% effective concentrations (EC50s) ranging from 0.10 to 0.12 mg/ml for A. fumigatus, 0.36 to 0.53 mg/ml for A. terreus, 0.27 to ≥32 mg/ml for F. solani, 0.41 to 0.55 mg/ml for F. oxysporum, and 0.97 and 0.65 mg/ml for S. apiospermum and S. prolificans, respectively. Similarly, itraconazole inhibited the growth of A. fumigatus and A. terreus isolates with MICs of <1 mg/ml (EC50 0.03 to 0.85 mg/ml) and S. apiospermum, but was not active against Fusarium species or S. prolificans. Voriconazole effectively inhibited the growth of Aspergillus, Fusarium, and S. apiospermum (EC50 0.10 to 3.3 mg/ml) but had minimal activity against a multidrug-resistant isolate of F. solani or S. prolificans. Hyphal damage visualized by DiBAC staining was observed more frequently with voriconazole and amphotericin B versus itraconazole. These data highlight the species-specific differences in antifungal pharmacodynamics between mold-active agents that could be relevant for the development of in vitro susceptibility breakpoints and antifungal dosing in vivo.

Documentos Relacionados