In vitro and in vivo electrochemical studies of nickel-chromium-molybdenum-titanium alloy applied to oral implant suprastructures / Estudos eletroquímicos in vitro e in vivo da liga níquel–cromo–molibdênio– titânio aplicada em supraestruturas de implantes orais

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

The electrochemical behavior of the nickel-chromium-molybdenum-titanium (Ni-Cr-Mo-Ti) alloy was studied and compared to a gold-platinum-palladium (Au-Pt-Pd) alloy in 0.15 mol.L -1 NaCl medium at 36.5ºC. In vitro studies also involved the electrochemical titanium characterization since these alloys are employed in osseointegrated implant suprastructures. In vivo studies were made using alloy-titanium (Ti cp) couples. Open circuit potential (OCP) measurements, anodic polarization curves (APC) and flame atomic absortion spectrophotometry (FAAS) were used as techniques in in vitro experiments. Scanning electronic microscopy (SEM) and energy dispersion spectroscopy (EDS) were used in order to interpret in vivo experiments. The Au-Pt-Pd alloy and Ti showed reproducible results. Their surfaces are homogeneous and the stationary OCP values of the two materials differ by a value less than 100 mV. The permanence of Au-Pt-Pd alloy near titanium for six months in oral environment showed by SEM the stability of the two materials. The Ni-Cr- Mo-Ti alloy did not show reproducibility in OCP and APC results, exhibiting narrow potential range of passivity about 100 mV. The Au-Pt-Pd alloy, under FAAS analysis, presented some divergence in the chemical composition when compared to that one previously provided by the manufacturer. FAAS detected 1% weight of silver. The Ni-Cr-Mo-Ti alloy, however, presented significant divergences and a chemical composition different from that one corresponding to the patent. The presence of aluminum not declared by the manufacturer was detected in meaningful amounts. SEM analysis of Ni-Cr-Mo-Ti alloy with the same amplification used for Au-Pt- Pd alloy and Ti showed a heterogeneous surface characterized by four phases: phase 1 – rich in titanium; phase 2 – rich in nickel; phase 3 – rich in nickel and chromium; phase 4 – rich in molybdenum. The permanence of Ni-Cr-Mo-Ti alloy,for six months in oral environment, showed by SEM using secondary electrons, depressions on the phase 2 area, suggesting oxidation of the rich nickel phase, with a significant oxygen presence, when compared to the correspondent area on the polishing surface.

ASSUNTO(S)

dental implantation liga dentária dental prosthesis implante dentário endoósseo endosseous corrosion implante dentário dental alloys prótese dentária corrosão

Documentos Relacionados