Functional organization of the Harvey murine sarcoma virus genome.

AUTOR(ES)
RESUMO

The comparative infectivity of Harvey murine sarcoma virus (Ha-MuSV) DNA for NIH 3T3 cells was determined for supercoiled Ha-MuSV DNA molecularly cloned in lambda phage and pBR322 at its unique EcoRI site (which is located near the middle of the 6-kilobase pair [kbp] unintegrated linear viral DNA) and for two cloned subgenomic fragments: one was 3.8 kbp and lacked about 1 kbp from each side of the EcoRI site, and the second did not contain the 3 kbp of the unintegrated linear viral DNA located on the 3' side of the EcoRI site. Each subgenomic DNA induced foci of transformed cells, but with a lower relative efficiency then genomic DNA. Transfection with intact vector Ha-MuSV DNA yielded results similar to those obtained after separation of Ha-MuSV DNA from vector DNA. Cells lines were then derived from individual foci transformed with each type of viral DNA. Focus-forming virus was recovered from transformed cells after superinfection with a helper-independent virus, but the efficiency varied by several orders of magnitude. For several transformed lines, the efficiency of recovery of focus-forming virus was correlated with the structure of the Ha-MuSV DNA in the cells before superinfection. When 32P-labeled Ha-MuSV DNA probes specific for sequences on either the 3' or 5' side of the EcoRI site were used to analyze the viral RNA in the transformed cell lines, all lines were found to hybridize with the 5' probe, but some lines did not hybridize with the 3' probe. The transformed lines contained high levels of the Ha-MuSV-coded p21 or its associated GDP-binding activity. We conclude that the transforming region and the sequences that code for the viral p21 protein are both located within the 2 kilobases closest to the 5' end of the Ha-MuSV genome.

Documentos Relacionados