Feedback from luminosity horizontal cells mediates depolarizing responses of chromaticity horizontal cells in the Xenopus retina.

AUTOR(ES)
RESUMO

It has been proposed that the depolarizing responses of chromaticity horizontal cells (C-HCs) to red light depend on a feedback signal from luminosity horizontal cells (L-HCs) to short-wavelength-sensitive cones in the retinas of lower vertebrates. In this regard we studied the C-HCs of the Xenopus retina. C-HCs and L-HCs were identified by physiological criteria and then injected with neurobiotin. The retina then was incubated with peanut agglutinin, which stains red-but not blue-sensitive cones. Electron microscopic examination revealed that L-HCs contact all cone classes, whereas C-HCs contact only blue-sensitive cones. Simultaneous recordings from C-HC/L-HC pairs established that when the L-HC was saturated by a steady bright red light, C-HCs alone responded to a superimposed blue stimulus. In response to red test flashes, the C-HC response was delayed by approximately 30 msec with respect to the L-HC response. Isolated HCs of both subtypes were examined by whole-cell patch clamp. Both responded to kainate with sustained inward currents and to quisqualate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) with desensitizing currents from a negative holding potential; i.e., both have AMPA-type glutamate receptors. gamma-Aminobutyric acid or glycine opened a chloride channel in the L-HC, whereas the C-HC was unresponsive to either inhibitory amino acid. Since glycine has been shown to abolish selectively the depolarizing response of the C-HC, this finding and other pharmacological data strongly implicate the L-HC in the underlying circuit. Moreover, because the C-HC does not respond to gamma-aminobutyric acid, the neurotransmitter of the L-HC, by elimination, a feedback synapse from L-HC to blue cone is the most plausible mechanism for the creation of depolarizing responses in C-HCs.

Documentos Relacionados