Extraction of knowledge from Artificial Neural Networks using Symbolic Machine Learning Systems and Genetic Algorithm / "Extração de conhecimento de redes neurais artificiais utilizando sistemas de aprendizado simbólico e algoritmos genéticos"

AUTOR(ES)
DATA DE PUBLICAÇÃO

2003

RESUMO

In Machine Learning - ML there is not a single algorithm that is the best for all application domains. In practice, several research works have shown that Artificial Neural Networks - ANNs have an appropriate inductive bias for several domains. Thus, ANNs have been applied to a number of data sets with high predictive accuracy. Symbolic ML algorithms have a less flexible inductive bias than ANNs. While ANNs can learn any input-output mapping, i.e., ANNs have the universal approximation property, symbolic ML algorithms frequently learn concepts describing them using hyperplanes. On the other hand, symbolic algorithms are needed when a good understating of the decision process is essential, since symbolic ML algorithms express the knowledge induced using symbolic structures that can be interpreted and understood by humans. ANNs lack the capability of explaining their decisions since the knowledge is encoded as real-valued weights and biases of the network. This encoding is difficult to be interpreted by humans. In several application domains, such as credit approval and medical diagnosis, providing an explanation related to the classification given to a certain case is of crucial importance. In a similar way, several users of ML algorithms desire to validate the knowledge induced, in order to assure that the generalization made by the algorithm is correct. In order to apply ANNs to a larger number of application domains, several researches have proposed methods to extract comprehensible knowledge from ANNs. The primary contribution of this thesis consists of two methods that extract symbolic knowledge, expressed as decision rules, from ANNs. The proposed methods have several advantages over previous methods, such as being applicable to any architecture and supervised learning algorithm of ANNs. The first method uses standard symbolic ML algorithm to extract knowledge from ANNs, and the second method extends the first method by combining the knowledge induced by several symbolic ML algorithms through the application of a Genetic Algorithm - GA. The proposed methods are experimentally analyzed in a number of application domains. Results show that both methods are capable to extract symbolic knowledge having high fidelity with trained ANNs. The proposed methods are compared with TREPAN, showing promising results. TREPAN is a well known method to extract knowledge from ANNs.

ASSUNTO(S)

extraction of knowledge from artificial neural networks symbolic machine learning systems algoritmo genético extração de conhecimento de redes neurais sistemas de aprendizado simbólico genetic algorithm

Documentos Relacionados