Evidence for microscopic, long-range hydration forces for a hydrophobic amino acid

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

We have combined neutron solution scattering experiments with molecular dynamics simulation to isolate an excess experimental signal that is caused solely by N-acetyl-leucine-amide (NALA) correlations in aqueous solution. This excess signal contains information about how NALA molecule centers are correlated in water, and we show how these solute–solute correlations might be determined at dilute concentrations in the small angle region. We have tested qualitatively different pair distribution functions for NALA molecule centers—gas, cluster, and aqueous forms of gc(r)—and have found that the excess experimental signal is adequate enough to rule out gas and cluster pair distribution functions. The aqueous form of gc(r) that exhibits a solvent-separated minimum, and possibly longer-ranged correlations as well, is not only physically sound but reproduces the experimental data reasonably well. This work demonstrates that important information in the small angle region can be mined to resolve solute–solute correlations, their lengthscales, and thermodynamic consequences even at dilute concentrations. The hydration forces that operate on the microscopic scale of individual amino acid side chains, implied by the small angle scattering data, could have significant effects on the early stages of protein folding, on ligand binding, and on other intermolecular interactions.

Documentos Relacionados