Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid.

AUTOR(ES)
RESUMO

The regulatory gene camR on the CAM plasmid of Pseudomonas putida (ATCC 17453) negatively controls expression of the cytochrome P-450cam hydroxylase operon (camDCAB) for the camphor degradation pathway and is oriented in a direction opposite to that of the camDCAB operon. In this study, we examined expression of the camR gene by monitoring the beta-galactosidase activity of camR-lacZ translational fusions in P. putida camR and camR+ strains. We found that the camR gene was autogenously regulated by its own product, CamR. To search for an operator site of the camR gene, a cam repressor (CamR)-overproducing plasmid, pHAOV1, was constructed by placing the camR gene under the control of a pL promoter. The translational initiation codon of CamR was changed by site-directed mutagenesis from GTG to ATG to improve translation efficiency. Judging from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the CamR protein was expressed up to about 10% of the soluble protein of CamR-overproducing Escherichia coli JM83/pHAOV1 cells. Results of DNase I footprinting assays using the cell lysate indicated that the CamR repressor covered a single region between the camR gene and the camDCAB operon. Our findings also suggest that the camR gene autogenously regulates its own expression by binding of the gene product, CamR, to the operator, which also serves as an operator of the camDCAB operon.

Documentos Relacionados