Estudo teÃrico das propriedades estruturais, eletrÃnicas e vibracionais de pontos quÃnticos de silÃcio e grafeno e cÃlculos no formalismo DFT aplicados a cristais de Ãcido Ãrico / Theoretical study of structural properties, electronic and vibrational of quantum dots silicon and graphene and calculations in the formalism DFT applied to uric acid crystals

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

25/02/2010

RESUMO

Com a finalidade do desenvolvimento de novos nanodispositivos, hà um grande interesse em conhecer as propriedades eletrÃnicas de materias nanoestruturados. Sobretudo, como modificar as propriedades eletrÃnicas de nanoestruturas jà bem conhecidas de forma controlada. Com este objetivo, muitas metodologias e experimentos tem sido desenvolvidos. Neste trabalho, estudamos de forma inteiramente atomÃstica atravÃs de simulaÃÃo computacional as propriedades eletrÃnicas, Ãpticas e vibracionais de (a) pontos quÃnticos esferÃricos maciÃos e ocos de silÃcio, (b) nanoflocos de grafeno e (c) cristais de Ãcido Ãrico anidro, mono e dihidratado utilizando mÃtodos de DinÃmia Molecular, SemiempÃrico, DFTB+ e DFT, para tanto utilizamos o programa AMPAC e os mÃdulos do Materials Studio (Accelrys), o Forcite, CASTEP, Gulp e o Dmol3 que sÃo estados de arte em simulaÃÃes atomÃsticas. Do ponto de vista clÃssico utilizamos campos de forÃa Brenner, que permite a formaÃÃo e rompimento de ligaÃÃes covalentes; do ponto de vista quÃntico, utilizamos o mÃtodo do funcional da densidade e DFTB+ . No estudo dos pontos quÃnticos silÃcio obteve-se uma diminuiÃÃo do gap de energia em funÃÃo do aumento do raio para os pontos maciÃos, e comportamento contrÃrio para os pontos ocos, quando fixamos um ponto e variamos tÃo somente o raio do buraco. Para os nanoflocos de grafeno obteve-se por meio de DinÃmica Molecular a estabilidade das estruturas, averiguando que atà 1000K elas conservam sua forma plana; acima de 3400K as estruturas comeÃam a ter suas ligaÃÃes rompidas. Os gaps de energia HOMO-LUMO sÃo sensÃveis Ãs bordas. A anÃlise dos estados de spins revelou que somente os nanoflocos triangulares com borda zigzag possuem excesso de elÃtrons com spin alfa, dependente no entanto da simetria. Os modos de vibraÃÃo para estruturas com nC ~ 50 foram obtidas e observou-se que nanofloco retangular exibe bandas de abosorÃÃo em comum com nanoflocos zigzag em dois intervalos do espectro infravermelho. Finalmente para os cristais de Ãcido Ãrico, observou-se que os parÃmetros de rede para o cristal dihidratado sÃo menos coerentes com valores experiemntais. O gap do cristal de Ãcido Ãrico anidro e mono à direto (~ 3.18 eV e 3.16 eV, respectivamente) e do dihidratado à indireto (~ 2.89 eV). Os orbitais 2p sÃo os maiores contribuintes à densidade de estados. A Ãgua tem bastante influÃncia na banda de conduÃÃo do cristal dihidratado. Hà um comportamento anisotrÃpico quando do estudo das propriedades Ãpticas destes cristais ao longo de quatro direÃÃes de incidÃncia do campo elÃtrico, sendo a anisotropia mais acentuada para o dihidratado. As pesquisas realizadas enquadram-se na temÃtica de atuaÃÃo do Instituto de NanoBioEstruturas &SimulaÃÃoao NanoBioMolecular [NANO(BIO)SIMES], um dos Institutos Nacionais de CiÃncia e Tecnologia financiados pelo CNPq a partir do inÃcio de 2009, que visa desenvolver atividades de pesquisa e formaÃÃo de recursos humanos de alto nÃvel em nanobioestruturas e simulaÃÃo nanobiomolecular

ASSUNTO(S)

fisica da materia condensada semicondutores silÃcio grafeno Ãcido Ãrico semiconductors silicon graphene uric acid

Documentos Relacionados