Estudo da função de correlação do modelo de Potts na rede de Bethe. / Study of pair correlation function of the Potts model in the Bethe lattice.

AUTOR(ES)
DATA DE PUBLICAÇÃO

1988

RESUMO

In this work we consider the Potts model on the Cayley tree subjected to a magnetic Field. This field can be represented by the interaction of the tree spins with an additional one, denominated ghost spin. This new lattice is then called closed-asymmetric Cayley tree. Being a hierarchical lattice it comes to have exact solutions which are obtained when the real-space renormalization group techniques are applied. Subtracting the surface effects and considering only the tree interior (Bethe lattice), these results reproduce the results of Bethe-Peierls mean-field approximation. With the objective of studying the pair-correlation function of the Potts model on the Bethe lattice, we at first consider a Potts chain interacting with a ghost spin. Throughout the series-parallel composition rules and the break-collapse method for the thermal transmissivities (pair-correlation function) we obtain a recursive relation for the correlation function between any two spins on the chain. We then show, due to the translational invariance of the Bethe lattice, that any pair of spins can be mapped into the latter system. Next we consider the one-state Potts model on the closed asymmetric tree. Decimating the inner spins of the generating unit for the lattice, we obtain a quadratic polynomial map for the renormalization group transformation (Bethe-Peierls map). The phase diagram of this system is obtained from the Mandelbrot set throughout a Mobius transformation. The Bethe-Peierls map has two stable fixed points which are related to the ferro and paramagnetic phases and the chaotic regime is identified with the spin-glass phase. This system turns out to be the simplest example of a McKay-Berker-Kirkpatrick spin glass. On the Bethe lattice with vanishing field this system presents second-order phase transitions. Analyzing the critical behavior of the pair-correlation function and of this derivatives, we see that if we identify the correlation function between the ghost spin and any spin on the lattice with the magnetization (per spin), and the correlation function between two nearest-neighbor spins with the internal energy of the system, five critical exponents (δ, β, γ ’, α, α ’) are calculated and they satisfy the scaling relations. In order to illustrate the recursive procedure presented to calculate the pair-correlation function between spins m bonds apart on the Bethe lattice, we consider the one-state Potts spins. We obtain explicitly the correlation for m=1, 2 and 3.

ASSUNTO(S)

Árvore de cayley bethe´s lattice pott´s model rede de bethe cayley´s tree modelo de potts fase vidro de spin break-collapse rule regra de quebra e colapso spin glass phase

Documentos Relacionados