Espectroscopia de alcalinos em Hélio líquido / Spectroscopy of Alkali in Liquid Helium

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

Alkali atoms are good probes for the understanding of liquid He properties. As such considerable experimental attention has been devoted to the analysis of the changes of line position and widths of the absorption spectra of alkali atoms in liquid He environment. On the theoretical side, several studies have used simplified models such as bubble and cluster models. Considerations of more realistic models are now timely and relevant. In this work, we use a combination of Monte Carlo (MC) simulation and ab initio quantum mechanical (QM) calculations. Liquid configurations are generated for subsequent QM calculations. One important aspect is the consideration of the complex interatomic interaction of the He-He pair. Using parametrized potentials, classical MC simulations are made for the alkali systems (Na, Rb, Cs and Na2) in liquid He. The conditions were T=3K and p=1 atm. Statistically uncorrelated configurations composed of a central alkaline element, surrounded by the full first solvation shell, are sampled and submitted to time-dependent DFT calculations of the spectrum using dierent hybrids functionals and dierents basis sets. Using the PBE1PBE and O3LYP functionals with large basis sets we obtained a spectral shift in excellent agreement with experiment for the systems of single alkaline atom. For comparison, we also used a cluster model and obtained 14 He atoms around the alkali atom with excellent results too. The radius of the cluster model converged to a value close to the maximum of the first solvation shell in radial distribution function. An additional point considered is the calculation of the spectral line width using the liquid simulation also discussed in this work. For Rb atom, the excitation energy in liquid He is about -18.9 nm. With the liquid He environment simulation we obtained the best results between -16.3 nm and -23.3 nm. The values of the spectral shift using the cluster model were between -17.3 nm and 22.3 nm. The two models show the same bubble radius, about 6-7Å. For the others system, like Na and Cs, we found the same convergence between the cluster model, the simulation of the He liquid and the experimental results. For Na2, the values obtained were in good agreement to the experimental values.

ASSUNTO(S)

alkali atoms spectroscopy hélio líquido espectroscopia átomos alcalinos liquid he

Documentos Relacionados