Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Coliphage N4 virion RNA polymerase (vRNAP), the most distantly related member of the T7-like family of RNA polymerases, is responsible for transcription of the early genes of the linear double-stranded DNA phage genome. Escherichia coli single-stranded DNA-binding protein (EcoSSB) is required for N4 early transcription in vivo, as well as for in vitro transcription on super-coiled DNA templates containing vRNAP promoters. In contrast to other DNA-dependent RNA polymerases, vRNAP initiates transcription on single-stranded, promoter-containing templates with in vivo specificity; however, the RNA product is not displaced, thus limiting template usage to one round. We show that EcoSSB activates vRNAP transcription at limiting single-stranded template concentrations through template recycling. EcoSSB binds to the template and to the nascent transcript and prevents the formation of a transcriptionally inert RNA:DNA hybrid. Using C-terminally truncated EcoSSB mutant proteins, human mitochondrial SSB (Hsmt SSB), phage P1 SSB, and F episome-encoded SSB, as well as a Hsmt-EcoSSB chimera, we have mapped a determinant of template recycling to the C-terminal amino acids of EcoSSB. T7 RNAP contains an amino-terminal domain responsible for binding the RNA product as it exits from the enzyme. No sequence similarity to this domain exists in vRNAP. Hereby, we propose a unique role for EcoSSB: It functionally substitutes in N4 vRNAP for the N-terminal domain of T7 RNAP responsible for RNA binding.

Documentos Relacionados