Effects of human and rabbit serum on viability, permeability, and envelope lipids of Serratia marcescens.

AUTOR(ES)
RESUMO

The major action of serum on gram-negative organisms is thought to be on the microbial envelope. We compared the effects of normal human and rabbit serum on the envelope lipids of two strains of Serratia marcescens, one sensitive and one resistant to the bactericidal effects of serum. During killing by either serum, the sensitive strain underwent rapid permeability changes coincident with degradation of microbial phospholipids. The resistant strain exhibited none of these effects. The phospholipid degradation that accompanies killing of the sensitive strain by serum could be caused by phospholipases present in serum or by Serratia's own phospholipid-splitting enzymes. The results indicate that phospholipid breakdown is caused by activation of bacterial of bacterial phospholipases and not by serum phospholipases. This conclusion is based upon the following findings.(i1 Although rabbit serum phospholipase A was at least 10 times more active than human serum phospholipase A, phospholipid degradation in the sensitive Serratia strain was comparable during (equally rapid) killing by human or rabbit serum. (ii) Heat treatment (56 C) of both sera eliminated bactericidal activity as well as microbial lipid degradation but abolished phospholipase activity of human serum only. (iii) Virtually complete removal of phospholipase A activity from human serum by adsorption onto autoclaved Micrococcus lysodeikticus had no effect on the extent of phospholipid hydrolysis or on bactericidal activity. Activation by serum of endogenous phospholipase activity in S. marcescens was accompanied by enhanced incorporation of lipid precursors into bacterial lipids. No evidence was found for increased turnover of protein or ribonucleic acid during killing by serum.

Documentos Relacionados