Discrete-event simulation of a wide-area health care network.

AUTOR(ES)
RESUMO

OBJECTIVE: Predict the behavior and estimate the telecommunication cost of a wide-area message store-and-forward network for health care providers that uses the telephone system. DESIGN: A tool with which to perform large-scale discrete-event simulations was developed. Network models for star and mesh topologies were constructed to analyze the differences in performances and telecommunication costs. The distribution of nodes in the network models approximates the distribution of physicians, hospitals, medical labs, and insurers in the Province of Saskatchewan, Canada. Modeling parameters were based on measurements taken from a prototype telephone network and a survey conducted at two medical clinics. Simulation studies were conducted for both topologies. RESULTS: For either topology, the telecommunication cost of a network in Saskatchewan is projected to be less than $100 (Canadian) per month per node. The estimated telecommunication cost of the star topology is approximately half that of the mesh. Simulations predict that a mean end-to-end message delivery time of two hours or less is achievable at this cost. A doubling of the data volume results in an increase of less than 50% in the mean end-to-end message transfer time. CONCLUSION: The simulation models provided an estimate of network performance and telecommunication cost in a specific Canadian province. At the expected operating point, network performance appeared to be relatively insensitive to increases in data volume. Similar results might be anticipated in other rural states and provinces in North America where a telephone-based network is desired.

Documentos Relacionados