Determination of the enzyme reaction rate in a differential fixed-bed reactor: a case study

AUTOR(ES)
FONTE

Brazilian Journal of Chemical Engineering

DATA DE PUBLICAÇÃO

2001-03

RESUMO

The reaction rate of starch hydrolysis catalyzed by a glucoamylase covalently bound to chitin particles was measured in a Differential Fixed-Bed Reactor (DFBR). Under selected test conditions the initial reaction rate may represent biocatalyst activity. Some aspects which influence measurement of the initial reaction rate of an immobilized enzyme were studied: the amount of desorbed enzyme and its hydrolytic activity, the extent of pore blockage of the biocatalyst caused by substrate solution impurities and the internal and external diffusional mass transfer effects. The results showed that the enzyme glucoamylase was firmly bound to the support, as indicated by the very low amount of desorbed protein found in the recirculating liquid. Although this protein was very active, its contribution to the overall reaction rate was negligible. It was observed that the biocatalyst pores were susceptible to being blocked by the impurities of the starch solution. This latter effect was accumulative, increasing with the number of sequential experiments carried out. When the substrate solution was filtered before use, very reliable determinations of immobilized enzyme reaction rates could be performed in the DFBR. External and internal diffusional resistences usually play a significant role in fixed-bed reactors. However, for the experimental system studied, internal mass transfer effects were not significant, and it was possible to select an operational condition (recirculation flow rate value) that minimized the external diffusional limitations.

Documentos Relacionados