Determination fo the configuration of excited Alfvén waves in tokamak TCABR / Determinação da configuração de ondas de alfvén excitadas no tokamak TCABR

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

In order to enhance the efficiency of the TCABRs Alfvén waves heating system, called AWES - Alfvén Waves Excitement System a diagnostics for determining the radio-frequency power applied to the plasma and a processing circuit for the magnetic coil system was built, characterized, installed and put into operation. The RF diagnostics system was designed to determine the total power that the set of AWES antennas applies to the plasma and, the magnetic coils system is designed to determine the RF spectrum excited by these antennas. Since the magnetic coils are already installed inside the TCABRs vacuum chamber only the signal processing circuit was built for it. The RF power diagnostics set is composed of three devices which are, one RF current sensing device, a set for determining the RF voltage and a multiplying system. A Rogowski coil is used for measuring the RF current. The RF voltage system may be split in two: a couple of voltage dividers and a processing circuit for the potential difference determination. Applying the RF current and voltage signals to the multiplier circuit it is possible to determine the RF power fed to the plasma. In this work a total of ten Rogowski coils, with 18mV/A sensibility constant, as well as twelve voltage dividers, capable of reducing a 10kV signal to approximately 5V signal, six voltage processing circuits and four signal multipliers, were built. Besides that, one demodulator circuit, capable of processing, simultaneously, the signals from four magnetic coils, was built too. All the devices constructed in this project were designed to be able to process signals with frequencies in the range of 3 to 6M Hz and produce a low frequency result signal that may be acquired automatically by the TCABR data acquisition system called TCAqs. For the calibration procedures and operational tests of the equipments developed in this work, it was established an Automated Calibration System (SCA) with a software application as one of its components that is capable of communicating and controlling test instruments, like oscilloscopes and function generators, through the communication port RS-232 and SCPI language. This software, called SCO, was fully developed using free and open source software in order to be used in Unix-Like operational systems like GNU/Linux. As a free software SCO was registered under the GNU/GPL license. The calibration procedures once operating with this system, whose principal characteristics is its automation functionality, allowed us to acquire a great quantity of data, that would have not been possible or practical to do manually. As a consequence, the resulting calibration curves may be considered more accurate, from an statistical point of view which enhanced considerably the quality of the results. After the characterization and detailed tests of all these devices off the TCABR and after the installation of the diagnostics in the TCABR, we may finally conclude they are ready to be used in experimental campaign.

ASSUNTO(S)

awes plasma tokamak tcabr awes plasma heating tokamak tcabr aquecimento alfvén waves ondas de alfvén

Documentos Relacionados