Design and Validation of a Conformation Sensitive Capillary Electrophoresis-Based Mutation Scanning System and Automated Data Analysis of the More than 15 kbp-Spanning Coding Sequence of the SACS Gene

AUTOR(ES)
FONTE

American Society for Investigative Pathology

RESUMO

In this study, we developed and analytically validated a fully automated, robust confirmation sensitive capillary electrophoresis (CSCE) method to perform mutation scanning of the large SACS gene. This method facilitates a rapid and cost-effective molecular diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Critical issues addressed during the development of the CSCE system included the position of a DNA variant relative to the primers and the CG-content of the amplicons. The validation was performed in two phases; a retrospective analysis of 32 samples containing 41 different known DNA variants and a prospective analysis of 20 samples of patients clinically suspected of having autosomal recessive spastic ataxia of Charlevoix-Saguenay. These 20 samples appeared to contain 73 DNA variants. In total, in 32 out of the 45 amplicons, a DNA variant was present, which allowed verification of the detection capacity during the validation process. After optimization of the original design, the overall analytical sensitivity of CSCE for the SACS gene was 100%, and the analytical specificity of CSCE was 99.8%. In conclusion, CSCE is a robust technique with a high analytical sensitivity and specificity, and it can readily be used for mutation scanning of the large SACS gene. Furthermore this technique is less time-consuming and less expensive, as compared with standard automated sequencing.

Documentos Relacionados