Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium.

AUTOR(ES)
RESUMO

A mutant strain of Salmonella typhimurium that lacks two proline-specific peptidases (peptidases P and Q) could not complete the degradation of proline peptides formed as intermediates in starvation-induced protein breakdown. The wild-type strain produced free proline as the product of degradation of proline-labeled proteins. The pepP pepQ mutant, however, produced a mixture of small proline peptides. In the absence of peptidase Q only, peptidase P could complete the degradation of most of the proline peptide intermediates formed. In the absence of peptidase P only, about 50% of the proline-labeled, acid-soluble products were proline peptides. These results are consistent with in vitro specificity data indicating that peptidase Q hydrolyzes X-Pro dipeptides only, whereas peptidase P attacks both X-Pro dipeptides and longer peptides with X-Pro at their N-termini. A mutant strain lacking four broad-specificity peptidases (peptidases N, A, B, and D), but containing peptidases P and Q, also produced proline peptides as products of protein breakdown. This observation suggests that broad-specificity peptidases are required to generate the X-Pro substrates of peptidases P and Q. A strain lacking six peptidases (N, A, B, D, P, and Q) was constructed and produced less free proline from protein breakdown than either the pepP pepQ strain or the pepN pepA pepB pepD strain. These observations suggest that the degradation of peptide intermediates involves the sequential removal of N-terminal amino acids and requires both broad-specificity aminopeptidases (peptidases N, A, and B) and the X-Pro-specific aminopeptidase, peptidase P.

Documentos Relacionados