Crescimento de trinca subcrítico em cerâmicas odontológicas: efeito do material (microestrutura) e do método de ensaio / Growth of crack subcrítico in dental ceramics: effect of the material (Microstructure) and the test method

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The objective of this study was to determine the mechanical properties and the microstructure of different dental ceramics in order to understand their influence on the slow crack growth (SCG) parameters, n (crack growth exponent) and ?f0, (scaling parameter), determined by different methods. The five ceramics tested were: porcelains VM7 (Vita) and D (d.Sign, Ivoclar), glass-ceramics E1 (IPS Empress, Ivoclar) e E2 (IPS Empress 2, Ivoclar) and composite IC (In-Ceram Alumina, Vita). Disc specimens (12 mm x 1 mm) were prepared according to manufacturersinstructions. The microstructure of the materials was carried out. The fracture toughness (KIc) was determined by means of the indentation fracture technique (IF) and indentation strength. The slow crack growth parameters were determined by dynamic fatigue test (constant stress rate), static fatigue test (constant stress) and the indentation fracture method. The results showed that all ceramic materials were composed by glassy matrix and crystalline phases, except for VM7 (vitreous porcelain). D and E1 presented leucite particles, in volume fractions of 0.16 and 0.29. For E1, the leucite crystals were homogeneously distributed in the glassy matrix, while in D, leucite formed agglomerates. E2 presented lithium dissilicate crystals (58% in volume) that presented an alignment tendency, with their major axis oriented perpendicularly to the pressing direction, which varied angularly from the injection point. IC presented alumina crystals (65% in volume) partially sintered, infiltrated by a lanthanum glass. Regardless of the method, the fracture toughness values were higher for IC (2.81 MPa.m1/2), followed by E2 (1.81 MPa.m1/2) and E1 (0.96 MPa.m1/2), and were lower for the porcelains D (0.84 MPa.m1/2) and VM7 (0.67 MPa.m1/2). Crack deflection was the main toughening mechanism observed for the ceramics containing crystalline phases. Regarding the dynamic fatigue test, the n values depended on the material, ranging from 17,2 to 31,1. With respect to ?f0, the values obtained for this parameter ranged from 48 e 384 MPa. For the ceramics based on potassium and aluminum silicate (porcelains VM7 and D and glass-ceramic E1), the chemical composition of the glass matrix seems to be related to the differences observed in the n values. The ?f0 parameter presented a positive correlation with KIc and volume fraction of crystalline particles. For the static fatigue test, used only for porcelain D, the n and ?f0 values were, respectively, 31,4 e 47 MPa, considered similar to the ones obtained by the dynamic method. When comparing the crack growth exponents determined by the dynamic and indentation fracture tests, it can be noted that n values for the ceramics with high volume fraction of glassy phase (VM7, D and E1) were similar for both methods, but for ceramics with higher crystalline content (E2 and IC), large discrepancies were observed. The static fatigue limit (KI0) was also determined for the five materials, ranging from 0.48 e 2.89 MPa.m1/2.

ASSUNTO(S)

mechanical properties dental ceramics slow crack growth propriedades mecânicas cerâmicas odontológicas crescimento de trinca subcrítico microstructure caracterização microestrutural

Documentos Relacionados