CORROSION OF ADVANCED STAINLESS STEEL IN PHYSIOLOGICAL SOLUTIONS / Corrosão de aços inoxidáveis avançados em meios fisiológicos

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The main objective of this study was to determine the corrosion behavior of advanced stainless steels (SS) in physiological solutions to evaluate their potential for use as biomaterials. Four stainless steels were tested: a superferritic stainless steel (DIN W. Nr. 1.4575), Incoloy MA 956, containing aluminum and yttrium oxide, an austenitic stainless steel DIN W. Nr. 1.4970, and a superaustenitic stainless steel obtained by adding 0.87% nitrogen to a duplex stainless steel DIN W. Nr. 1.4460. The passive film on Incoloy MA 956 contained alumina and this affected the corrosion resistance of the steel. The protective films on the other three steels with low nickel content were rich in chromium and iron. The electrochemical behavior of these steels was investigated using electrochemical impedance spectroscopy (EIE), potentiodynamic polarization, scanning vibrating electrode technique (SVET), field emission gun (FEG), scanning electrochemical microscopy (SECM), optical microscopy (OM) and scanning electron microscopy (SEM). The test electrolytes used were Hanks solution, a culture medium known as Minimum Essential Medium (MEM) and a buffered phoshated solution (PBS). The EIE results were interpreted using equivalent electrical circuits that simulated the duplex structure of the oxide layer. All the materials were more resistant to localized corrosion than AISI 316L, with composition similar to ASTM F-138 SS. The results also highlighted the effect of the solution annealing treatment on corrosion resistance of the high nitrogen DIN W. Nr. 1.4460. The DIN W. Nr. 1.4970 steel was cytotoxic. Hence it cannot be used as a biomaterial. The DIN W. Nr. 1.4575 steel and Incoloy MA 956 can only be used for applications of easy removal, such as for odontological prostheses, due to their ferromagnetic properties. The DIN W. Nr. 1.4460 (0.87% nitrogen) steel was the SS with the best properties, among those studied for use as biomaterials.

ASSUNTO(S)

corrosão biomateriais aços inoxidáveis corrosão biomateriais aços inoxidáveis

Documentos Relacionados